Publications


Review Articles on Design and Synthesis of Materials Precursors

“Mechanism-Based Design of Precursors for Focused Electron Beam Induced Deposition,” Carden, W.G.; Lu, H.; Spencer, J.A.; Fairbrother, D.H.; McElwee-White, L., MRS Commun., 2018, 8, 343-357. 

“Understanding the Electron Stimulated Surface Reactions of Organometallic Complexes to Enable Design of Precursors for Electron Beam Induced Deposition,” Spencer, J.; Rosenberg, S.; Barclay, M.; Wu, Y.-C.; McElwee-White, L.; Fairbrother, D.H., Appl. Phys. A., 2014117, 1631-1644.

“Mechanism-Based Design of Precursors for MOCVD,” McElwee-White, L.; Koller, J.; Kim, D.; Anderson, T.J., ECS Transactions200925(8), 161-171.

“Design of Precursors for the CVD of Inorganic Thin Films,” McElwee-White, L. Dalton Trans.2006, 5327 – 5333.


Precursors for Focused Electron Beam-Induced Deposition

“Dissociation of the FEBID precursor cis-Pt(CO)2Cl2 driven by low-energy electrons,” Ferreira da Silva, F.; Thorman, R.M.; Bjornsson, R.; Lu, H.; McElwee-White, L.; Ingólfsson, O., Phys. Chem. Chem. Phys., 2020, 22, 6100-6108.

“Identifying and rationalizing the differing surface reactions of low energy electrons and ions with an organometallic precursor,” Thorman, R.M.; Matsuda, S.J.; McElwee-White, L.; Fairbrother, D.H., J. Phys. Chem. Lett., 2020, 11, 2006-2013.

“Dissociative ionization of the potential focused electron beam induced deposition precursor π -allyl ruthenium (II) tricarbonyl bromide, a combined theoretical and experimental study,” Cipriani, M.; Thorman, R.M.; Brewer, C.R.; McElwee-White, L.; Ingólfsson, O., Eur. Phys. J. D, 2019, 73, 227.

“Focused Electron Beam Induced Deposition (FEBID) and Post-Growth Purification Using the Heteroleptic Ru Complex (η3-C3H5)Ru(CO)3Br,” Jurczyk, J.; Brewer, C.R.; Hawkins, O.M.; Polyakov, M.N.; Kapusta, C.; McElwee-White, L.; Utke, I., ACS Appl. Mater. Interfaces, 2019, 11, 28164-28171.

“Design, Synthesis, and Evaluation of CF3AuCNR Precursors for Focused Electron Beam Induced Deposition of Gold,” Carden, W.G.; Thorman, R.M.; Unlu, I.; Abboud, K.A.; Fairbrother, D.H.; McElwee-White, L., ACS Appl. Mater. Interfaces201911, 11976-11987.

“Electron Induced Surface Reactions of (η5-C5H5)Fe(CO)2Mn(CO)5, a Potential Heterobimetallic Precursor for Focused Electron Beam Induced Deposition,” Unlu, I.; Johnson, K.R.; Thorman, R.M.; Ingólfsson, O.; McElwee-White, L;. Fairbrother, D.H., Phys. Chem. Chem. Phys.201820, 7862-7874.

Low energy electron-induced decomposition of (η5-Cp)Fe(CO)2Mn(CO)5, a potential bimetallic precursor for focused electron beam induced deposition of alloy structures,” Thorman, R.M.; Unlu, I.; Johnson, K.R.; Bjornsson, R.; McElwee-White, L;. Fairbrother, D.H., Ingólfsson, O., Phys. Chem. Chem. Phys.2018, 20, 5644-5656.

“Halide Effects on the Sublimation Temperature of L-Au-X Complexes:  Implications for Their Use as Precursors in Vapor Phase Deposition Methods,” Carden, W.G.; Pedziwiatr, J.; Abboud, K.A.; McElwee-White, L., ACS Appl. Mater. Interfaces20179, 40998-41005.

“Comparing post-deposition reactions of electrons and radicals with Pt nanostructures created by focused electron beam induced deposition,” Spencer, J.A.; Barclay, M.; Gallagher, M.J.; Winkler, R.; Unlu, I.; Wu, Y.-C.; Plank, H.; McElwee-White, L.; Fairbrother, D.H., Beilstein J. Nanotech.,20178, 2410-2424.

“Low energy electron-induced decomposition of (η3-C3H5)Ru(CO)3Br, a potential focused electron beam induced deposition precursor with a heteroleptic ligand set,” Thorman, R.M.; Brannaka, J.A.; McElwee-White, L.; Ingólfsson, O.,  Phys. Chem. Chem. Phys., 201719, 13264-13271.

“Electron Induced Surface Reactions of cis-Pt(CO)2Cl2: a Route to Focused Electron Beam Induced Deposition of Pure Pt Nanostructures,” Spencer, J.; Wu, Y.-C.; McElwee-White, L.; Fairbrother, D.H., J. Am. Chem. Soc.2016138, 9172– 9182.

“Electron Induced Surface Reactions of η3-Allyl Ruthenium Tricarbonyl Bromide [η3-(C3H5)Ru(CO)3Br]:  Contrasting the Behavior of Different Ligands,” Spencer, J.; Brannaka, J.A.; Barclay, M.; McElwee-White, L.; Fairbrother, D.H., J. Phys. Chem C., 2015119, 15349–15359.

“Understanding the Electron Stimulated Surface Reactions of Organometallic Complexes to Enable Design of Precursors for Electron Beam Induced Deposition,” Spencer, J.; Rosenberg, S.; Barclay, M.; Wu, Y.-C.; McElwee-White, L.; Fairbrother, D.H., Appl. Phys. A., 2014117, 1631-1644.


Photoassisted CVD on Sensitive Substrates

“Low Temperature Platinum Chemical Vapor Deposition on Functionalized Self-Assembled Monolayers,” Salazar, B.G.; Liu, H.; Walker, A.V.; McElwee-White, L., J. Vac. Sci. Technol. A, 2020, 38, 033404.

“Photochemistry of (η3-allyl)Ru(CO)3X Precursors for Photoassisted Chemical Vapor Deposition,” Brewer, C.R.; Hawkins, O.M.; Sheehan, N.C.; Bullock, J.D.; Kleiman, V.D.; Walker, A.V.; McElwee-White, L., Organometallics201938, 4363-4370.

“Photochemical CVD of Ru on Functionalized Self-Assembled Monolayers from Organometallic Precursors,” Johnson, K.R.; Arevalo Rodriguez, P.; Brewer, C.R.; Brannaka, J.A.; Shi, Z.; Yang, J.; Salazar, B.; McElwee-White, L.; Walker, A.V., J. Chem. Phys.2017146, 052816.


Precursors for Chemical Vapor Deposition of Metal Sulfide Films

“Synthesis and Evaluation of Molybdenum Imido-Thiolato Complexes for the Aerosol-Assisted Chemical Vapor Deposition of Nitrogen-Doped Molybdenum Disulfide,” Ou, N.C.; Preradovic, K.; Ferenczy, E.T.; Sparrow, C.B.; Germaine, I.M.; Jurca, T.; Craciun, V.; McElwee-White, L., Organometallics, 2020.  DOI: 10.1021/acs.organomet.9b00705.

N,N-disubstituted-N’-acylthioureas as modular ligands for deposition of transition metal sulfides,” Ali, Z.; Richey, N.E.; Bock, D.C.; Abboud, K.A.; Akhtar, J.; Sher, M.; McElwee-White, L., Dalton Trans.2018, DOI: 10.1039/C7DT04860B.

“Aerosol‐Assisted Chemical Vapor Deposition of WS2 from the Single Source Precursor WS(S2)(S2CNEt2)2,” Richey, N.E.; Haines, C.; Tami, J.L.; and McElwee-White, L., Chem. Commun.201753, 7728-7731.


Precursors for Chemical Vapor Deposition of Tungsten Oxide Films and Nanomaterials

“Growth of WOx from Tungsten (VI) Oxo-Fluoroalkoxide Complexes with Partially Fluorinated β-diketonate/β-ketoesterate Ligands: Comparison of Chemical Vapor Deposition to Aerosol-Assisted CVD,” Ou, N.C.; Bock, D.C.; Su, X.; Craciun, D.; Craciun, V.; McElwee-White, L., ACS Appl. Mater. Interfaces, 2019, 11, 28180-28188.

Bis(β-ketoiminate) Dioxo Tungsten(VI) Complexes as Precursors for Growth of WOx by Aerosol-Assisted Chemical Vapor Deposition,” Su, X.; Panariti, P.; Abboud, K.A.; McElwee-White, L., Polyhedron, 2019, 169, 219-227.

Synthesis of β-Ketoiminate and β-Iminoesterate Tungsten (VI) Oxo-Alkoxide Complexes as AACVD Precursors for Growth of WOx Thin Films,” Su, X.; Kim, T.; Abboud, K.A.; McElwee-White, L., Polyhedron2019157, 548-557. 

“Synthesis of Tungsten Oxo Fluoroalkoxide Complexes WO(OR)3L as Precursors for Growth of WOx Nanomaterials by Aerosol-Assisted Chemical Vapor Deposition,” Bock, D.C.; Ou, N.C.; Bonsu, R.O.; Anghel, C.; Su, X.; McElwee-White, L., Solid State Ionics2018315, 77-84.

“Tungsten Oxide Film and Nanorods Grown by Aerosol-Assisted Chemical Vapor Deposition using κ2-β-Diketonate and β-Ketoesterate Tungsten (VI) Oxo-Alkoxide Precursors,” Kim, H.; Bonsu, R.O.; Bock, D.C.; Ou, N.C.; Korotkov, R.Y.; McElwee-White, L.; Anderson, T.J., ECS J. Solid State Sci. Technol.20165, Q3095-Q3105.

Dalton Cover Issue

Synthesis and Evaluation of κ2-β-Diketonate and β-Ketoesterate Tungsten (VI) Oxo-Alkoxide Complexes as Precursors for Chemical Vapor Deposition of WOx Thin Films,” Bonsu, R.O.; Bock, D.C.; Kim, H.; Korotkov, R.Y.; Abboud, K.A.; Anderson, T.J.; McElwee-White, L., Dalton Trans., 20164510897-10908.

“Dioxo-Fluoroalkoxide Tungsten(VI) Complexes for Growth of WOx Thin Films by Aerosol-Assisted Chemical Vapor Deposition,” Bonsu, R.O.; Kim, H.; O’Donohue, C.; Korotkov, R.Y.; Abboud, K.A.; Anderson, T.J.; McElwee-White, L., Inorg. Chem201554, 7536-7547. 

“Aerosol-Assisted Chemical Vapor Deposition of Tungsten Oxide Films and Nanorods from Oxo Tungsten(VI) Fluoroalkoxide Precursors,” Kim, H.; Bonsu, R.O.; O’Donohue, C.; Korotkov, R.Y.; McElwee-White, L.; Anderson, T.J., ACS Appl. Mater. Interfaces20157, 2660–2667. 

“Partially Fluorinated Oxo-alkoxide Tungsten(VI) Complexes as Precursors for Deposition of WOx Nanomaterials,” Bonsu, R.O.; Kim, H.; O’Donohue, C.; Korotkov, R.Y.; McClain, K.R.; Abboud, K.A.; Ellsworth, A.A.; Walker, A.V.; Anderson, T.J.; McElwee-White, L., Dalton Trans.201443, 9226-9233.


Precursors for Chemical Vapor Deposition of Tungsten Nitride and Carbonitride Films

In Situ Investigation of the Thermal Decomposition of Cl4(CH3CN)W(NiPr) During Simulated Chemical Vapor Deposition,” Nolan, M.M.; Kim, S.Y.; Koley, A.; Anderson, T.J.; McElwee-White, L., Eur. J. Inorg. Chem.2019, 3661–3666.

“Synthesis and Characterization of Tungsten Nitrido Amido Guanidinato Complexes as Precursors for Chemical Vapor Deposition of WNxCy Thin Films,” Nolan, M.M.; Touchton, A.J.; Richey, N.E.; Ghiviriga, I.; Rocca, J.R.; Abboud, K.A.; McElwee-White, L., Eur. J. Inorg. Chem.2018, 46-53.

“Effect of Ligand Structure on Chemical Vapor Deposition of WNxCy Thin Films from Tungsten Nitrido Complexes of the type WN(NR2)3,” Koley, A.; O’Donohue, C.; Nolan, M.M.; McClain, K.R.; Bonsu, R.O.; Korotkov, R.Y.; Anderson, T.J., McElwee-White, L., Chem. Mater.2015, 27, 8326−8336. 

“Low Temperature Deposition of WNxCy Cu Diffusion Barriers using WN(NEt2)3 as a Single-Source Precursor,” O’Donohue, C.T.; McClain, K.R.; Koley, A.; Revelli, J.C.; McElwee-White, L.; Anderson, T.J., ECS J. Solid State Sci. Tech.20154, N3180-N3187.

“Tungsten Nitrido Complexes as Precursors for Low Temperature Chemical Vapor Deposition of WNxCy   Films as Diffusion Barriers for Cu Metallization,” McClain, K.R.; O’Donohue, C.; Koley, A.; Bonsu, R.O.; Abboud, K.A.; Revelli, J.C.; Anderson, T.J.; McElwee-White, L., J. Am. Chem. Soc. 2014136, 1650-1662.

“Experimental and Computational Studies of the Homogeneous Thermal Decomposition of the Tungsten Dimethylhydrazido Complex Cl4(CH3CN)W(NNMe2),” Lee, J.; Kim, D.; Kim, O.H.; Anderson, T.J.; Koller, J.; Denomme, D.; Habibi, S.Z.; Ehsan, M.; Eyler, J.R.; McElwee-White, L., J. Electrochem. Soc.2012159, H545-H553.


Precursors for Surface Plasmon-Mediated Chemical Solution Deposition

“Surface Plasmon-Mediated Chemical Solution Deposition of Cu Nanoparticle Films,” Qiu, J.; Richey, N.E.; DuChene, J.S.; Zhai, Y.; Zhang, Y.; McElwee-White, L.; Wei, W.D., J. Phys. Chem C., 2016120, 20775−20780.

“Solvent Control of Surface Plasmon Mediated Chemical Deposition of Au Nanoparticles from Alkylgold Phosphine Complexes,” Muhich, C.L.; Qiu, J.; Holder, A.M.; Wu, Y.-C.; Weimer, A.W.; Wei, W.D.; McElwee-White, L.; Musgrave, C.B., ACS Appl. Mater. Interfaces20157, 13384–13394.

“Surface Plasmon Mediated Chemical Solution Deposition of Gold Nanoparticles on a Nanostructured Silver Surface,” Qiu, J.; Wu, Y.-C.; Wang, Y.-C.; Engelhard, M.H.; McElwee-White, L.; Wei, W.D., J. Am. Chem. Soc. 2013135, 38-41.