Publications
”For a complete list of publications, click here
Review Articles on Design and Synthesis of Materials Precursors
”Single-Source Precursors for the Chemical Vapor Deposition of Group 4-6 Transition Metal Dichalcogenides,” Germaine, I.M.; McElwee-White, L., Cryst. Growth Des. 2024, 14, 1-16.
“Roadmap for focused ion beam technologies,” Höflich, K.; Hobler, G.; Allen, F.I.; Wirtz, T.; Rius, G.; McElwee-White, L.; Krasheninnikov, A.; Schmidt, M.; Utke, I.; Klingner, N.; Osenberg, M.; Córdoba, R.; Djurabekova, F.; Manke, I.; Moll, P.; Manoccio, M.; de Teresa, J.M.; Bischoff, L.; Michler, J.; De Castro, O.; Delobbe, A.; Dunne, P.; Dobrovolskiy, O.V.; Frese, N.; Gölzhäuser, A.; Mazarov, P.; Koelle, D.; Möller, W.; Pérez-Murano, F.; Philipp, P.; Vollnhals, F.; Hlawacek, G., Appl. Phys. Rev., 2023, 10, 041311.
“Charged Particle-Induced Surface Reactions of Organometallic Complexes as a Guide to Precursor Design for Electron and Ion Induced Deposition of Nanostructures,” Yu, J.-C.; Abdel-Rahman, M.K.; Fairbrother, D.H.; McElwee-White, L., ACS Appl. Mater. Interfaces, 2021, 13, 48333-48348.
“Precursors for Chemical Vapor Deposition of Tungsten Oxide and Molybdenum Oxide,” Ou, N.C.; Su, X.; Bock, D.C.; McElwee-White, L., Coord. Chem. Rev., 2020, 421, 231459.
“Mechanism-Based Design of Precursors for Focused Electron Beam Induced Deposition,” Carden, W.G.; Lu, H.; Spencer, J.A.; Fairbrother, D.H.; McElwee-White, L., MRS Commun., 2018, 8, 343-357.
“Understanding the Electron Stimulated Surface Reactions of Organometallic Complexes to Enable Design of Precursors for Electron Beam Induced Deposition,” Spencer, J.; Rosenberg, S.; Barclay, M.; Wu, Y.-C.; McElwee-White, L.; Fairbrother, D.H., Appl. Phys. A., 2014, 117, 1631-1644.
“Mechanism-Based Design of Precursors for MOCVD,” McElwee-White, L.; Koller, J.; Kim, D.; Anderson, T.J., ECS Transactions, 2009, 25(8), 161-171.
“Design of Precursors for the CVD of Inorganic Thin Films,” McElwee-White, L. Dalton Trans., 2006, 5327 – 5333.
Precursors for Focused Electron and Ion Beam-Induced Deposition
“Electron-induced ligand loss from iron tetracarbonyl methyl acrylate,” Lyshchuk, H.: Chaudhary, A.; Luxford, T.F.M.; Ranković, M.; Kočišek, J.; Fedor, J.; McElwee-White, L.; Nag, P., Beilstein J. Nanotechnol., 2024, 15, 797–807.
“Electron-induced deposition using Fe(CO)4MA and Fe(CO)5 – effect of MA ligand and process conditions,” Boeckers, H.; Chaudhary, A.; Martinović, P.; Walker, A.V.; McElwee-White, L.; Swiderek, P., Beilstein J. Nanotechnol., 2024, 15, 500–516.”Reactions of Ions with Adsorbed Me3PtCpMe: The Role of Ion Identity,” Abdel-Rahman, M.K.; Eckhert, P.; McElwee-White, L.; Fairbrother, D.H., J. Phys. Chem. C, 2024, 128, 7723-7732.
“Reactions of Ions with Adsorbed Me3PtCpMe: The Role of Ion Identity,” Abdel-Rahman, M.K.; Eckhert, P.; McElwee-White, L.; Fairbrother, D.H., J. Phys. Chem. C, 2024, 128, 7723-7732.
“Dissociative Electron Attachment and Dissociative Ionization of CF3AuCNC(CH3)3, a Potential FEBID Precursor for Gold Deposition,” Kamali, A.; Carden, W.G.; Johnson, J.V.; McElwee-White, L.; Ingólfsson, O., Eur. Phys. J. D, 2023, 77, 157.
“Nanoscale Ru-Containing Deposits from Ru(CO)4I2 via Simultaneous Focused Electron Beam Induced Deposition and Etching in UHV: Mask Repair in EUVL and Beyond,” Bilgilisoy, E.; Yu, J.-C.; Preischl, C.; McElwee-White, L.; Steinrück, H.-P.; Marbach, H., ACS Appl. Nano Mater., 2022, 5, 3855-3865.
“Electron beam-induced deposition of Platinum from Pt(CO)2Cl2 and Pt(CO)2Br2,” Mahgoub, A.; Lu, H.; Thorman, R.M.; Preradovic, K.; Jurca, T.; McElwee-White, L.; Fairbrother, D.H.; Hagen, C.W., Beilstein J. Nanotech., 2020, 11, 1789-1800. DOI: 10.3762/bjnano.11.161.
“Surface Reactions of Low Energy Argon Ions with Organometallic Precursors,” Bilgilisoy, E.; Thorman,R.M.; Yu, J.C.; Dunn, T.B.; Marbach, H.; McElwee-White, L.;Fairbrother, D.H., J. Phys. Chem. C, 2020, DOI: 10.1021/acs.jpcc.0c07269.
“Electron-induced reactions of Ru(CO)4I2: gas phase, surface, and FEBID,” Thorman, R.M.; Jensen, P.A.; Yu, J.C.; Matsuda, S.J.; McElwee-White, L.; Ingólfsson, O.;Fairbrother, D.H., J. Phys. Chem. C, 2020, 124, 10593-10604.
“Efficient NH3-based process to remove chlorine from electron beam deposited ruthenium produced from (η3-C3H5)Ru(CO)3Cl,” Rohdenburg, M.; Boeckers, H.; Brewer, C.R.; McElwee-White, L.;Swiderek, P., Sci. Rep., 2020, 10, 10901.
“Identifying and rationalizing the differing surface reactions of low energy electrons and ions with an organometallic precursor,” Thorman, R.M.; Matsuda, S.J.; McElwee-White, L.; Fairbrother, D.H., J. Phys. Chem. Lett., 2020, 11, 2006-2013.
“Focused Electron Beam Induced Deposition (FEBID) and Post-Growth Purification Using the Heteroleptic Ru Complex (η3-C3H5)Ru(CO)3Br,” Jurczyk, J.; Brewer, C.R.; Hawkins, O.M.; Polyakov, M.N.; Kapusta, C.; McElwee-White, L.; Utke, I., ACS Appl. Mater. Interfaces, 2019, 11, 28164-28171.
“Design, Synthesis, and Evaluation of CF3AuCNR Precursors for Focused Electron Beam Induced Deposition of Gold,” Carden, W.G.; Thorman, R.M.; Unlu, I.; Abboud, K.A.; Fairbrother, D.H.; McElwee-White, L., ACS Appl. Mater. Interfaces, 2019, 11, 11976-11987.
“Electron Induced Surface Reactions of (η5-C5H5)Fe(CO)2Mn(CO)5, a Potential Heterobimetallic Precursor for Focused Electron Beam Induced Deposition,” Unlu, I.; Johnson, K.R.; Thorman, R.M.; Ingólfsson, O.; McElwee-White, L;. Fairbrother, D.H., Phys. Chem. Chem. Phys., 2018, 20, 7862-7874.
“Electron Induced Surface Reactions of cis-Pt(CO)2Cl2: a Route to Focused Electron Beam Induced Deposition of Pure Pt Nanostructures,” Spencer, J.; Wu, Y.-C.; McElwee-White, L.; Fairbrother, D.H., J. Am. Chem. Soc., 2016, 138, 9172– 9182.
“Electron Induced Surface Reactions of η3-Allyl Ruthenium Tricarbonyl Bromide [η3-(C3H5)Ru(CO)3Br]: Contrasting the Behavior of Different Ligands,” Spencer, J.; Brannaka, J.A.; Barclay, M.; McElwee-White, L.; Fairbrother, D.H., J. Phys. Chem C., 2015, 119, 15349–15359.
Photoassisted CVD on Sensitive Substrates
“Microwave Spectrum and Molecular Structure Calculations for η4-butadiene Ruthenium Tricarbonyl,” Daly, A.M.; Roehling, K.K.; Hill, R.P.; Gonzalez, M.G.; Kang, X.; McElwee-White, L.; Kukolich, S., J. Mol. Spectrosc., 2024, 405, 111949. DOI: 10.1016/j.jms.2024.111949.
“Photochemistry of (η4–diene)Ru(CO)3 Complexes as Precursor Candidates for Photoassisted Chemical Vapor Deposition,” Brewer, C.R.; Sheehan, N.C.; Herrera, J.; Walker, A.V.; McElwee-White, L., Organometallics, 2022, 41, 761-775.
“Photoactivated Ru CVD Using (ƞ3-Allyl)Ru(CO)3X (X = Cl, Br, I): From Molecular Adsorption to Ru Thin Film Deposition,” Salazar, B.G.; Brewer, C.R.; McElwee-White, L.; Walker, A.V., J. Vac. Sci. Technol. A, 2022, 40, 023404.
“Photochemistry of 1,5-Cyclooctadiene Platinum Complexes for Photoassisted Chemical Vapor Deposition,” Liu, H.; Brewer, C.R.; Walker, A.V.; McElwee-White, L., Organometallics, 2020, 39, 4565-4574.
“Low Temperature Platinum Chemical Vapor Deposition on Functionalized Self-Assembled Monolayers,” Salazar, B.G.; Liu, H.; Walker, A.V.; McElwee-White, L., J. Vac. Sci. Technol. A, 2020, 38, 033404.
“Photochemistry of (η3-allyl)Ru(CO)3X Precursors for Photoassisted Chemical Vapor Deposition,” Brewer, C.R.; Hawkins, O.M.; Sheehan, N.C.; Bullock, J.D.; Kleiman, V.D.; Walker, A.V.; McElwee-White, L., Organometallics, 2019, 38, 4363-4370.
“Photochemical CVD of Ru on Functionalized Self-Assembled Monolayers from Organometallic Precursors,” Johnson, K.R.; Arevalo Rodriguez, P.; Brewer, C.R.; Brannaka, J.A.; Shi, Z.; Yang, J.; Salazar, B.; McElwee-White, L.; Walker, A.V., J. Chem. Phys., 2017, 146, 052816.
Precursors for Chemical Vapor Deposition of Metal Sulfide Films
“Aerosol-Assisted Chemical Vapor Deposition of 2H-WS2 From Single-Source Tungsten Dithiolene Precursors,” Germaine, I.M.; Richey, N.E.; Huttel, M.B.; McElwee-White, L., J. Mater. Chem. C, 2024, 12, 3526-3524.
“AACVD of MoS2 with a Thiourea Sulfur Source: Single-source Precursors vs. Coreactant Mixtures” Germaine, I.M.; Huttel, M.B.; Alderman, M.P.; McElwee-White, L., ACS Appl. Mater. Interfaces, 2023, 15, 37764-37774.
“Molybdenum (IV) Dithiocarboxylates as Single-Source Precursors for AACVD of MoS2 Thin Films,” Muhammad, S.; Ferenczy, E.T.; Germaine, I.M.; Wagner, J.T.; Jan, M.T.; McElwee-White, L., Dalton Trans., 2022, 51, 12540-12548.
“Synthesis and Evaluation of Molybdenum Imido-Thiolato Complexes for the Aerosol-Assisted Chemical Vapor Deposition of Nitrogen-Doped Molybdenum Disulfide,” Ou, N.C.; Preradovic, K.; Ferenczy, E.T.; Sparrow, C.B.; Germaine, I.M.; Jurca, T.; Craciun, V.; McElwee-White, L., Organometallics, 2020, 39, 956-966.
“N,N-disubstituted-N’-acylthioureas as modular ligands for deposition of transition metal sulfides,” Ali, Z.; Richey, N.E.; Bock, D.C.; Abboud, K.A.; Akhtar, J.; Sher, M.; McElwee-White, L., Dalton Trans., 2018, 47, 2719–2726.
Aerosol‐Assisted Chemical Vapor Deposition of WS2 from the Single Source Precursor WS(S2)(S2CNEt2)2,” Richey, N.E.; Haines, C.; Tami, J.L.; and McElwee-White, L., Chem. Commun., 2017, 53, 7728-7731.
Precursors for Chemical Vapor Deposition of Metal Oxide Films
“A Molybdenum(III) Amidinate: Synthesis, Characterization and Vapor Phase Growth of Mo-based Materials,” Shaw, T.D.; Ali, Z.; Currie, T.M.; Berriel, S.N.; Butkus, B.; Wagner, J.T.; Preradovic, K.; Yap, G.P.A.; Green, J.C.; Banerjee, P.; Sattelberger, A.P.; McElwee-White, L.; Jurca, T.; ACS Appl. Mater. Interfaces, 2023, 15, 35590-35599.
“Growth of WOx from Tungsten (VI) Oxo-Fluoroalkoxide Complexes with Partially Fluorinated β-diketonate/β-ketoesterate Ligands: Comparison of Chemical Vapor Deposition to Aerosol-Assisted CVD,” Ou, N.C.; Bock, D.C.; Su, X.; Craciun, D.; Craciun, V.; McElwee-White, L., ACS Appl. Mater. Interfaces, 2019, 11, 28180-28188.
“Bis(β-ketoiminate) Dioxo Tungsten(VI) Complexes as Precursors for Growth of WOx by Aerosol-Assisted Chemical Vapor Deposition,” Su, X.; Panariti, P.; Abboud, K.A.; McElwee-White, L., Polyhedron, 2019, 169, 219-227.
“Synthesis of β-Ketoiminate and β-Iminoesterate Tungsten (VI) Oxo-Alkoxide Complexes as AACVD Precursors for Growth of WOx Thin Films,” Su, X.; Kim, T.; Abboud, K.A.; McElwee-White, L., Polyhedron, 2019, 157, 548-557.
“Synthesis of Tungsten Oxo Fluoroalkoxide Complexes WO(OR)3L as Precursors for Growth of WOx Nanomaterials by Aerosol-Assisted Chemical Vapor Deposition,” Bock, D.C.; Ou, N.C.; Bonsu, R.O.; Anghel, C.; Su, X.; McElwee-White, L., Solid State Ionics, 2018, 315, 77-84.
“Tungsten Oxide Film and Nanorods Grown by Aerosol-Assisted Chemical Vapor Deposition using κ2-β-Diketonate and β-Ketoesterate Tungsten (VI) Oxo-Alkoxide Precursors,” Kim, H.; Bonsu, R.O.; Bock, D.C.; Ou, N.C.; Korotkov, R.Y.; McElwee-White, L.; Anderson, T.J., ECS J. Solid State Sci. Technol., 2016, 5, Q3095-Q3105.
“Synthesis and Evaluation of κ2-β-Diketonate and β-Ketoesterate Tungsten (VI) Oxo-Alkoxide Complexes as Precursors for Chemical Vapor Deposition of WOx Thin Films,” Bonsu, R.O.; Bock, D.C.; Kim, H.; Korotkov, R.Y.; Abboud, K.A.; Anderson, T.J.; McElwee-White, L., Dalton Trans., 2016, 45, 10897-10908.
“Dioxo-Fluoroalkoxide Tungsten(VI) Complexes for Growth of WOx Thin Films by Aerosol-Assisted Chemical Vapor Deposition,” Bonsu, R.O.; Kim, H.; O’Donohue, C.; Korotkov, R.Y.; Abboud, K.A.; Anderson, T.J.; McElwee-White, L., Inorg. Chem. 2015, 54, 7536-7547.
“Aerosol-Assisted Chemical Vapor Deposition of Tungsten Oxide Films and Nanorods from Oxo Tungsten(VI) Fluoroalkoxide Precursors,” Kim, H.; Bonsu, R.O.; O’Donohue, C.; Korotkov, R.Y.; McElwee-White, L.; Anderson, T.J., ACS Appl. Mater. Interfaces, 2015, 7, 2660–2667.
“Partially Fluorinated Oxo-alkoxide Tungsten(VI) Complexes as Precursors for Deposition of WOx Nanomaterials,” Bonsu, R.O.; Kim, H.; O’Donohue, C.; Korotkov, R.Y.; McClain, K.R.; Abboud, K.A.; Ellsworth, A.A.; Walker, A.V.; Anderson, T.J.; McElwee-White, L., Dalton Trans., 2014, 43, 9226-9233.
Precursors for Chemical Vapor Deposition of Tungsten Nitride and Carbonitride Films
“In Situ Investigation of the Thermal Decomposition of Cl4(CH3CN)W(NiPr) During Simulated Chemical Vapor Deposition,” Nolan, M.M.; Kim, S.Y.; Koley, A.; Anderson, T.J.; McElwee-White, L., Eur. J. Inorg. Chem., 2019, 3661–3666.
“Synthesis and Characterization of Tungsten Nitrido Amido Guanidinato Complexes as Precursors for Chemical Vapor Deposition of WNxCy Thin Films,” Nolan, M.M.; Touchton, A.J.; Richey, N.E.; Ghiviriga, I.; Rocca, J.R.; Abboud, K.A.; McElwee-White, L., Eur. J. Inorg. Chem., 2018, 46-53.
“Effect of Ligand Structure on Chemical Vapor Deposition of WNxCy Thin Films from Tungsten Nitrido Complexes of the type WN(NR2)3,” Koley, A.; O’Donohue, C.; Nolan, M.M.; McClain, K.R.; Bonsu, R.O.; Korotkov, R.Y.; Anderson, T.J., McElwee-White, L., Chem. Mater., 2015, 27, 8326−8336.
“Low Temperature Deposition of WNxCy Cu Diffusion Barriers using WN(NEt2)3 as a Single-Source Precursor,” O’Donohue, C.T.; McClain, K.R.; Koley, A.; Revelli, J.C.; McElwee-White, L.; Anderson, T.J., ECS J. Solid State Sci. Tech., 2015, 4, N3180-N3187.
“Tungsten Nitrido Complexes as Precursors for Low Temperature Chemical Vapor Deposition of WNxCy Films as Diffusion Barriers for Cu Metallization,” McClain, K.R.; O’Donohue, C.; Koley, A.; Bonsu, R.O.; Abboud, K.A.; Revelli, J.C.; Anderson, T.J.; McElwee-White, L., J. Am. Chem. Soc. 2014, 136, 1650-1662.
“Experimental and Computational Studies of the Homogeneous Thermal Decomposition of the Tungsten Dimethylhydrazido Complex Cl4(CH3CN)W(NNMe2),” Lee, J.; Kim, D.; Kim, O.H.; Anderson, T.J.; Koller, J.; Denomme, D.; Habibi, S.Z.; Ehsan, M.; Eyler, J.R.; McElwee-White, L., J. Electrochem. Soc., 2012, 159, H545-H553.
A full list of papers can be found here. https://lmwhite.chem.ufl.edu/wp-content/uploads/sites/59/2024/10/LMW-PUBS-reverse-chron.pdf